Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1334130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481530

RESUMO

Transient Receptor Potential Vanilloid 1 (TRPV1) and Ankyrin 1 (TRPA1) are nonselective cation channels expressed in primary sensory neurons and several other non-neuronal structures such as immune cells, keratinocytes, and vascular smooth muscle cells. They play important roles in nociception, pain processing and their chanellopathies are associated with the development of several pathological conditions. They are located in cholesterol- and sphingolipid-rich membrane lipid raft regions serving as platforms to modulate their activations. We demonstrated earlier that disruption of these lipid rafts leads to decreased TRP channel activation and exerts analgesic effects. Cyclodextrins are macrocyclic molecules able to form host-guest complexes with cholesterol and deplete it from the membrane lipid rafts. The aim of this study was to investigate 8 structurally different (methylated and non-methylated) CD derivatives on cell viability, mitochondrial membrane potential, membrane composition and activation abilities of the TRPV1 and TRPA1 channels. We showed that non-methylated derivatives have preferable safety profiles compared to methylated ones. Furthermore, methylated derivatives reduced mitochondrial membrane potential. However, all investigated derivatives influence the ordered cell membrane structure depleting membrane cholesterol and inhibit the TRPV1 agonist capsaicin- and the TRPA1 agonist allyl isothiocyanate-induced Ca2+-influx. This mechanism of action might provide novel perspectives for the development of peripherally acting analgesics via indirectly decreasing the generation and transmission of nociceptive signals.

2.
FEBS Open Bio ; 13(5): 818-832, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36971048

RESUMO

Corticotropin-releasing factor (CRF) stimulates adrenocorticotropic hormone (ACTH) secretion from the pituitary gland and is an essential regulator of the hypothalamic-pituitary-adrenocortical axis. Isoforms of CRF receptor are known to mediate the effects of urocortin stress ligands on the regulation of stress responses, anxiety, and feeding behavior; however, urocortin stress ligands also influence cell proliferation. In view of the tumor-promoting capacity of prolonged stress, here we investigated (a) the effect of urocortin on cell proliferative signaling via extracellular signal-regulated kinase 1/2, (b) the expression and cellular distribution of the specific CRF receptor isoforms, and (c) the intracellular localization of phosphorylated ERK1/2 in HeLa cells. Stimulation of cell proliferation was observed in the presence of 10 nm urocortin. Our data also suggest that MAP kinase MEK, the transcription factors E2F-1 and p53, and PKB/Akt are involved in this process. These findings may have therapeutic relevance for the targeted treatment of various malignancies.


Assuntos
Receptores de Hormônio Liberador da Corticotropina , Urocortinas , Humanos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Urocortinas/farmacologia , Urocortinas/metabolismo , Sistema de Sinalização das MAP Quinases , Células HeLa , Ligantes , Hormônio Liberador da Corticotropina/metabolismo , Hormônio Liberador da Corticotropina/farmacologia
3.
Sci Rep ; 12(1): 5808, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388084

RESUMO

Rat pheochromocytoma (PC12) cells were treated with the proteasome inhibitor MG-132 and morphological changes were recorded. Initially, neuronal differentiation was induced but after 24 h signs of morphological deterioration became apparent. We performed nuclear staining, flow cytometry and WST-1 assay then analyzed signal transduction pathways involving Akt, p38 MAPK (Mitogen-Activated Protein Kinase), JNK (c-Jun N-terminal Kinase), c-Jun and caspase-3. Stress signaling via p38, JNK and c-Jun was active even after 24 h of MG-132 treatment, while the survival-mediating Akt phosphorylation declined and the executor of apoptosis (caspase-3) was activated by that time and apoptosis was also observable. We examined subcellular localization of stress signaling components, applied kinase inhibitors and dominant negative H-Ras mutant-expressing PC12 cells in order to decipher connections of stress-mediating pathways. Our results are suggestive of that treatment with the proteasome inhibitor MG-132 has a biphasic nature in PC12 cells. Initially, it induces neuronal differentiation but prolonged treatments lead to apoptosis.


Assuntos
Leupeptinas , Inibidores de Proteassoma , Neoplasias das Glândulas Suprarrenais , Animais , Apoptose/fisiologia , Caspase 3 , Ativação Enzimática , Proteínas Quinases JNK Ativadas por Mitógeno , Células PC12 , Feocromocitoma , Inibidores de Proteassoma/farmacologia , Proteínas Proto-Oncogênicas c-akt , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno
4.
Mol Cell Endocrinol ; 547: 111610, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219718

RESUMO

Urocortins are members of the stress-related corticotropin-releasing factor family. Small amounts of them are present in the circulation and they are produced locally in various tissues of higher vertebrates. Aside from regulating circulation, or food uptake they also influence, via auto- and paracrine mechanisms, cell proliferation. In the present study we investigated in MCF7 human breast cancer cells the effect of urocortin onto mitogenic signaling via ERK1/2. Our results revealed that already 10 nM urocortin could stimulate the phosphorylation of these kinases and cell proliferation of MCF7 cells while ATP production was reduced when kept in the presence of the peptide up to two days. We examined the expression and contribution of the specific receptors of urocortin to the activation of ERK1/2 and to cell proliferation, the intracellular distribution of phosphorylated ERK1/2, and the involvement of additional proteins like PKA, PKB/Akt, MEK, p53, Rb and E2F-1 behind the observed phenomena.


Assuntos
Neoplasias da Mama , Urocortinas , Trifosfato de Adenosina/metabolismo , Proliferação de Células , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Humanos , Sistema de Sinalização das MAP Quinases , Células MCF-7 , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Urocortinas/farmacologia
5.
Clin Hemorheol Microcirc ; 81(1): 1-12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34958009

RESUMO

BACKGROUND: The cold ischemia -reperfusion injury may lead to microcirculatory disturbances, hepatocellular swelling, inflammation, and organ dysfunction. Nicorandil is an anti-ischemic, ATP-sensitive potassium (KATP) channel opener drug and has proved its effectiveness against hepatic Ischemia/Reperfusion (I/R) injury. OBJECTIVE: This study aimed to investigate the effect of Nicorandil on mitochondrial apoptosis, oxidative stress, inflammation, histopathological changes, and cold ischemic tolerance of the liver in an ex vivo experimental isolated-organ-perfusion model. METHODS: We used an ex vivo isolated rat liver perfusion system for this study. The grafts were retrieved from male Wistar rats (n = 5 in each), preserved in cold storage (CS) for 2 or 4 hours (group 1, 2), or perfused for 2 or 4 hours (group 3, 4) immediately after removal with Krebs Henseleit Buffer (KHB) solution or Nicorandil containing KHB solution under subnormothermic (22-25°C) conditions (group 5, 6). After 15 minutes incubation at room temperature, the livers were reperfused with acellular, oxygenated solution under normothermic condition for 60 minutes. RESULTS: In the Nicorandil perfused groups, significantly decreased liver enzymes, GLDH, TNF-alpha, and IL-1ß were measured from the perfusate. Antioxidant enzymactivity was higher in the perfused groups. Histopathological examination showed ameliorated tissue deterioration, preserved parenchymal structure, decreased apoptosis, and increased Bcl-2 activity in the Nicorandil perfused groups. CONCLUSIONS: Perfusion with Nicorandil containing KHB solution may increase cold ischemic tolerance of the liver via mitochondrial protection which can be a potential therapeutic target to improve graft survival during transplantation.


Assuntos
Preservação de Órgãos , Traumatismo por Reperfusão , Animais , Temperatura Baixa , Inflamação , Isquemia , Fígado , Masculino , Microcirculação , Modelos Teóricos , Nicorandil/farmacologia , Perfusão , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico
6.
Cells ; 10(12)2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34943979

RESUMO

Diabetes and hypertension are complex pathologies with increasing prevalence nowadays. Their interconnected pathways are frequently manifested in retinopathies. Severe retinal consequences and their tight connections as well as their possible treatments are particularly important to retinal research. In the present, work we induced diabetes with streptozotocin in spontaneously hypertensive rats and treated them either with PACAP or olaparib and alternatively with both agents. Morphological and immunohistochemical analyses were carried out to describe cell-specific changes during pathologies and after different treatments. Diabetes and hypertension caused massive structural and cellular changes especially when they were elicited together. Hypertension was crucial in the formation of ONL and OPL damage while diabetes caused significant differences in retinal thickness, OPL thickness and in the cell number of the GCL. In diabetes, double neuroprotective treatment ameliorated changes of calbindin-positive cells, rod bipolar cells and dopaminergic amacrine cells. Double treatment was curative in hypertensive diabetic rat retinas, especially in the case of rod bipolar and parvalbumin-positive cells compared to untreated or single-treated retinas. Our results highlighted the promising therapeutic benefits of olaparib and PACAP in these severe metabolic retinal disorders.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Retinopatia Hipertensiva/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células Amácrinas/efeitos dos fármacos , Animais , Calbindinas/genética , Linhagem da Célula/efeitos dos fármacos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Humanos , Retinopatia Hipertensiva/genética , Retinopatia Hipertensiva/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Ratos , Ratos Endogâmicos SHR/genética , Células Bipolares da Retina/efeitos dos fármacos
7.
Front Immunol ; 12: 733541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539669

RESUMO

Invertebrates, including earthworms, are applied to study the evolutionarily conserved cellular immune processes. Earthworm immunocytes (so-called coelomocytes) are functionally similar to vertebrate myeloid cells and form the first line of defense against invading pathogens. Hereby, we compared the engulfment mechanisms of THP-1 human monocytic cells, differentiated THP-1 (macrophage-like) cells, and Eisenia andrei coelomocytes towards Escherichia coli and Staphylococcus aureus bacteria applying various endocytosis inhibitors [amantadine, 5-(N-ethyl-N-isopropyl) amiloride, colchicine, cytochalasin B, cytochalasin D, methyl-ß-cyclodextrin, and nystatin]. Subsequently, we investigated the messenger RNA (mRNA) expressions of immune receptor-related molecules (TLR, MyD88, BPI) and the colocalization of lysosomes with engulfed bacteria following uptake inhibition in every cell type. Actin depolymerization by cytochalasin B and D has strongly inhibited the endocytosis of both bacterial strains in the studied cell types, suggesting the conserved role of actin-dependent phagocytosis. Decreased numbers of colocalized lysosomes/bacteria supported these findings. In THP-1 cells TLR expression was increased upon cytochalasin D pretreatment, while this inhibitor caused a dropped LBP/BPI expression in differentiated THP-1 cells and coelomocytes. The obtained data reveal further insights into the evolution of phagocytes in eukaryotes. Earthworm and human phagocytes possess analogous mechanisms for bacterial internalization.


Assuntos
Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Macrófagos/fisiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Amantadina/farmacologia , Animais , Evolução Biológica , Diferenciação Celular , Endocitose , Humanos , Imunidade Celular , Imunidade Inata , Oligoquetos , Células THP-1
8.
Cells Tissues Organs ; 210(2): 135-150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34218223

RESUMO

Imbalance of homeostasis causes permanent changes in the body with time. The central nervous system is especially prone to these changes since it possesses limited regenerative capacity. In the retina, neurons are damaged during the aging process, and this eventually leads to deterioration of vision. In our 2-year-long study, we examined genetically closely related rat individuals to disclose the hidden retinal causes of age-associated visual dysfunction. Morphometric analysis showed significant reduction of the retina thickness with aging, particularly that of the inner plexiform layer. To reveal changes between the age groups, we used immunohistochemistry against vesicular glutamate transporter 1 protein for photoreceptor and bipolar cell terminals, Brn3a for ganglion cells, calbindin 28 kDa for horizontal cells, parvalbumin for AII amacrines, protein kinase Cα for rod bipolar cells, tyrosine hydroxylase for dopaminergic cells, glial fibrillary acidic protein for glial cells, and peanut-agglutinin labeling for cones. The most significant decrease was observed in the density of photoreceptor and the ganglion cells in the aging process. By using immunocytochemistry and western blot technique, we observed that calbindin and vesicular glutamate transporter 1 protein staining do not change much with aging; tyrosine hydroxylase, parvalbumin and calretinin showed the highest immunoreactivity during the midlife period. Most interestingly, the level of glial fibrillary acidic protein also changes similarly to the previously named markers. Our results provide further evidence that protein content is modified at least in some cell populations of the rat retina, and the number of retinal cells declined with aging. We conclude that senescence alone may cause structural and functional damage in the retinal tissue.


Assuntos
Retina , Tirosina 3-Mono-Oxigenase , Animais , Neuroglia , Neurônios , Ratos , Ratos Wistar
9.
Metabolites ; 11(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204418

RESUMO

Cold ischemic injury to the intestine during preservation remains an unresolved issue in transplantation medicine. Autophagy, a cytoplasmic protein degradation pathway, is essential for metabolic adaptation to starvation, hypoxia, and ischemia. It has been implicated in the cold ischemia (CI) of other transplantable organs. This study determines the changes in intestinal autophagy evoked by cold storage and explores the effects of autophagy on ischemic grafts. Cold preservation was simulated by placing the small intestines of Wistar rats in an IGL-1 (Institute George Lopez) solution at 4 °C for varying periods (3, 6, 9, and 12 h). The extent of graft preservation injury (mucosal and cellular injury) and changes in autophagy were measured after each CI time. Subsequently, we determined the differences in apoptosis and preservation injury after activating autophagy with rapamycin or inhibiting it with 3-methyladenine. The results revealed that ischemic injury and autophagy were induced by cold storage. Autophagy peaked at 3 h and subsequently declined. After 12 h of storage, autophagic expression was reduced significantly. Additionally, enhanced intestinal autophagy by rapamycin was associated with less tissue, cellular, and apoptotic damage during and after the 12-h long preservation. After reperfusion, grafts with enhanced autophagy still presented with less injury. Inhibiting autophagy exhibited the opposite trend. These findings demonstrate intestinal autophagy changes in cold preservation. Furthermore, enhanced autophagy was protective against cold ischemia-reperfusion damage of the small bowels.

10.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209226

RESUMO

As neurotransmitter, GABA is fundamental for physiological processes in the developing retina. Its synthesis enzymes are present during retinal development, although the molecular regulatory mechanisms behind the changes in expression are not entirely understood. In this study, we revealed the expression patterns of glutamic acid decarboxylase 67(GAD67) and its coding gene (GAD1) and its potential miRNA-dependent regulation during the first three postnatal weeks in rat retina. To gain insight into the molecular mechanisms, miRNA-sequencing supported by RT-qPCR and in situ hybridization were carried out. GAD1 expression shows an increasing tendency, peaking at P15. From the in silico-predicted GAD1 targeting miRNAs, only miR-23 showed similar expression patterns, which is a known regulator of GAD1 expression. For further investigation, we made an in situ hybridization investigation where both GAD67 and miR-23 also showed lower expression before P7, with the intensity of expression gradually increasing until P21. Horizontal cells at P7, amacrine cells at P15 and P21, and some cells in the ganglion cell layer at several time points were double labelled with miR-23 and GAD67. Our results highlight the complexity of these regulatory networks and the possible role of miR-23 in the regulation of GABA synthesizing enzyme expression during postnatal retina development.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glutamato Descarboxilase/biossíntese , MicroRNAs/biossíntese , Retina/crescimento & desenvolvimento , Animais , Glutamato Descarboxilase/genética , MicroRNAs/genética , Ratos , Ratos Wistar
11.
Clin Hemorheol Microcirc ; 79(2): 311-325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867357

RESUMO

BACKGROUND: Ischemia-reperfusion injury (IRI) can cause insufficient microcirculation of the transplanted organ and results in a diminished and inferior graft survival rate. OBJECTIVE: This study aimed to investigate the effect of different doses of an anti-diabetic drug, Pioglitazone (Pio), on endoplasmic reticulum stress and histopathological changes, using an in situ perfusion rat model. METHODS: Sixty male Wistar rats were used and were divided into six groups, consisting of the control group, vehicle-treated group and four Pio-treated groups (10, 20, 30 and 40 mg/kg Pio was administered). The rats were perfused through vena cava and an outflow on the abdominal aorta occurred. Following the experiment, kidneys and livers were collected. The level of the endoplasmic reticulum stress markers (XBP1 and Caspase 12) was analyzed using Western blot and histopathological changes were evaluated. RESULTS: Histopathological findings were correlated with the Western blot results and depict a protective effect corresponding to the elevated dosage of Pioglitazone regarding in situ perfusion rat model. CONCLUSIONS: In our study, Pioglitazone can reduce the endoplasmic reticulum stress, and the most effective dosage proved to be the 40 mg/kg Pio referencing the kidney and liver samples.


Assuntos
Estresse do Retículo Endoplasmático , Traumatismo por Reperfusão , Animais , Masculino , Perfusão , Pioglitazona/farmacologia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico
12.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806574

RESUMO

It is well established that miR-9 contributes to retinal neurogenesis. However, little is known about its presence and effects in the postnatal period. To expand our knowledge, miRNA-small RNA sequencing and in situ hybridization supported by RT-qPCR measurement were carried out. Mir-9 expression showed two peaks in the first three postnatal weeks in Wistar rats. The first peak was detected at postnatal Day 3 (P3) and the second at P10, then the expression gradually decreased until P21. Furthermore, we performed in silico prediction and established that miR-9 targets OneCut2 or synaptotagmin-17. Another two microRNAs (mir-135, mir-218) were found from databases which also target these proteins. They showed a similar tendency to mir-9; their lowest expression was at P7 and afterwards, they showed increase. We revealed that miR-9 is localized mainly in the inner retina. Labeling was observed in ganglion and amacrine cells. Additionally, horizontal cells were also marked. By dual miRNA-in situ hybridization/immunocytochemistry and qPCR, we revealed alterations in their temporal and spatial expression. Our results shed light on the significance of mir-9 regulation during the first three postnatal weeks in rat retina and suggest that miRNA could act on their targets in a stage-specific manner.


Assuntos
MicroRNAs/metabolismo , Retina/metabolismo , Animais , Hibridização In Situ/métodos , Cuidado Pós-Natal , Ratos , Ratos Wistar , Células Ganglionares da Retina/metabolismo , Fatores de Transcrição/metabolismo
13.
Polymers (Basel) ; 13(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669057

RESUMO

Monomers leached from resin-based composites (RBCs) may reach intrapulpal concentrations of the millimolar (mM) range, which could contribute to inflammation. The aim of this investigation was to assess the cytotoxicity of triethylene glycol dimethacrylate (TEGDMA) monomers on pulp cells as well as to identify molecular mechanisms leading to apoptosis. Pulp cells were harvested from molars extracted for orthodontic reasons and cultured through an explant method. To assess cytotoxicity, cells underwent a 5-day exposure to 0.75, 1.5, and 3 mM TEGDMA and were subject to cell counting and WST-1 staining. Based on the findings, cells were subsequently exposed to 0.1, 0.2, 0.75, 1.5, and 3 mM TEGDMA for 24 h to uncover the details of apoptosis. Changes in the production or cleavage of the apoptosis-specific proteins caspase-8, caspase-9, caspase-3, caspase-12, and Apoptosis-Inducing Factor (AIF) were measured by Western blot. The 5-day study showed concentration- and time-dependent cytotoxicity. Significant cell death was detected after 24 h with TEGDMA concentrations of 1.5 and 3 mM. One-day exposure to TEGDMA led to the activation of caspase-8, -9, -3, and -12 and an increased AIF production. Results suggest that relevant concentrations of TEGDMA monomers, leached from RBCs, induce apoptosis in pulp cells through both caspase-dependent as well as caspase-independent mechanisms. Endoplasmic reticulum stress and the activation of caspase-independent apoptotic pathways may be further mechanisms by which monomers induce apoptosis in pulp cells.

14.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466261

RESUMO

Retinal aging is the result of accumulating molecular and cellular damage with a manifest decline in visual functions. Somatostatin (SST) and pituitary adenylate cyclase-activating polypeptide (PACAP) have been implicated in neuroprotection through regulating disparate aspects of neuronal activity (survival, proliferation and renewal). The aim of the present study was to validate a transgenic model for SST-expressing amacrine cells and to investigate the chronic effect of PACAP on the aging of SSTergic and dopaminergic cells of the retina. SST-tdTomato transgenic mice that were 6, 12 and 18 months old were treated intravitreally with 100 pmol of PACAP every 3 months. The density of SST and dopaminergic amacrine cells was assessed in whole-mounted retinas. Cells displaying the transgenic red fluorescence were identified as SST-immunopositive amacrine cells. By comparing the three age groups. PACAP treatment was shown to induce a moderate elevation of cell densities in both the SST and dopaminergic cell populations in the 12- and 18-month-old animals. By contrast, the control untreated and saline-treated retinas showed a minor cell loss. In conclusion, we report a reliable transgenic model for examining SSTergic amacrine cells. The fundamental novelty of this study is that PACAP could increase the cell density in matured retinal tissue, anticipating new therapeutic potential in age-related pathological processes.


Assuntos
Senescência Celular/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Retina/efeitos dos fármacos , Animais , Contagem de Células/métodos , Neurônios Dopaminérgicos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
15.
Clin Oral Investig ; 25(4): 2269-2279, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32845470

RESUMO

OBJECTIVES: Resin-based composites may leach monomers such as triethylene-glycol dimethacrylate (TEGDMA), which could contribute to intrapulpal inflammation. The aim of this investigation was to examine whether various concentrations of TEGDMA are able to influence dentally relevant Matrix metalloproteinase (MMP)-2, MMP-8, and MMP-9 production, total collagenase/gelatinase activity in pulp cells, and suggest possible signaling mechanisms. MATERIALS AND METHODS: Pulp cells were cultured, followed by a 1-day exposure to sublethal TEGDMA concentrations (0.1, 0.2, and 0.75 mM). Total MMP activity was measured by an EnzCheck total collagenase/gelatinase assay, while the production of specific MMPs and the relative changes of phosphorylated, i.e., activated signaling protein levels of extracellular signal-regulated kinase (ERK)1/2, p38, c-Jun N-terminal kinase (JNK) were identified by western blot. Immunocytochemistry image data was also plotted and analyzed to see whether TEGDMA could possibly alter MMP production. RESULTS: An increase in activated MMP-2, MMP-8, and MMP-9 production as well as total collagenase activity was seen after a 24-h exposure to the abovementioned TEGDMA concentrations. Increase was most substantial at 0.1 (P = 0.002) and 0.2 mM (P = 0.0381). Concurrent p-ERK, p-p38, and p-JNK elevations were also detected. CONCLUSIONS: Results suggest that monomers such as TEGDMA, leached from resin-based restorative materials, activate and induce the production of dentally relevant MMPs in pulp cells. Activation of ERK1/2, p38, or JNK and MMP increase may play a role in and/or can be part of a broader stress response. Clinical relevance Induction of MMP production and activity may further be components in the mechanisms of intrapulpal monomer toxicity.


Assuntos
Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Células Cultivadas , Colagenases , Metaloproteinase 8 da Matriz , Polietilenoglicóis , Ácidos Polimetacrílicos/toxicidade
16.
Int J Ophthalmol ; 13(6): 927-934, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566504

RESUMO

AIM: To study the effect of mechanical stress on the cytoskeleton in lens epithelial cells following conventional phacoemulsification surgery (CPS) and femtosecond laser-assisted cataract surgery (FLACS). METHODS: The cytoskeleton of the epithelial cells of the anterior lens capsules (ALC) removed by CPS and FLACS was examined by immunohistochemistry. Expression of the intermediate filament, glial fibrillary acidic protein (GFAP), and glutamine synthetase (GS) immunoreactivity were detected. In order to map the actin network of cells, fluorescently labeled phalloidin was used. The samples were examined using confocal laser scanning microscopy. RESULTS: GFAP expression was visible in a larger number of the epithelial cells after CPS compared to FLACS. In CPS sample's epithelial cells, GFAP immunoreactivity indicated robust morphological change. Regarding the actin filaments, the presence of tubular elements connecting epithelial cells, regular actin pattern and marked cortical network after CPS were found. Following FLACS, the actin cytoskeleton of the epithelial cells remained densely structured, and the tubular elements were undetectable, however, the above-mentioned regular actin pattern and the marked cortical network were visible. CONCLUSION: The conventional removal of the ALC induces more robust changes of the cytoskeleton of the lens epithelial cells.

17.
Int J Ophthalmol ; 11(9): 1440-1446, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225215

RESUMO

AIM: To study molecular and morphological changes in lens epithelial cells following femtosecond laser-assisted and manually performed continuous curvilinear capsulotomy (CCC) in order to get information about these methods regarding their potential role in the induction of development of secondary cataract. METHODS: Anterior lens capsules (ALC) were removed from 40 patients with age-related cataract by manual CCC and by femtosecond laser-assisted capsulotomy (FLAC). Samples removed by manual CCC were assorted in group 1, FLAC samples were classified in group 2. Morphology of lens epithelial cells was examined with light and electron microscopes. Following capsulotomy, expressions of p53, Bcl-2 and cyclin D1 genes were analyzed with reverse transcriptase polymerase chain reaction. Immunohistochemistry was used to detect the pro-apoptotic p53 in the epithelial cells. RESULTS: Light and electron microscopic examination showed that ALC of group 1 contained more degenerating cells following manual CCC than after FLAC. The expression level of p53 was higher after manual than laser-assisted surgery. Immunocytochemistry indicated significantly higher number of cells containing p53 protein in the manual CCC group than following FLAC. Bcl-2 and cyclin D1 gene expression levels were slightly lower following manual CCC than after FLAC, but the difference was not significant. CONCLUSION: Manually removed ALC shows slightly, but not significantly larger damage due to the mechanical stretching and pulling of the capsule than those removed using FLAC.

18.
Histochem Cell Biol ; 150(5): 557-566, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30088096

RESUMO

Nowadays, increasing number of microRNAs are found to have crucial roles in various physiological processes through gene expression regulation via RNA silencing as a result of base pairing with complementary mRNA sequences. To reveal the spatial distribution of microRNA expression in tissues, in situ hybridisation is the only method developed to date. This work aims to provide a novel approach to obtain information on the possible involvement of microRNA-s in regulatory processes under experimental conditions by enhancing fluorescent detection of microRNA labelling. Developing Wistar rats were used as a model system to analyse retinal microRNA expression in the first 3 postnatal weeks. Using cryosections, the crucial elements of optimal labels were (1) the concentration and duration of proteinase K treatment, (2) hybridisation temperature of microRNA probes and (3) temperature of stringency washes. Further improvements made possible to combine our in situ hybridisation protocol with double-label immunofluorescence allowing for the simultaneous detection of microRNA-s with high sensitivity and a neuronal cell marker and/or a synaptic marker protein. Thus, the regulatory microRNA-s can be localised in an identified cell type along with its potential target protein. We believe that our protocol can be easily adapted for a variety of tissues of different origins, developmental stages and experimental conditions.


Assuntos
Hibridização in Situ Fluorescente , MicroRNAs/análise , Proteínas/análise , Retina/química , Retina/citologia , Animais , Biomarcadores/análise , Imuno-Histoquímica , MicroRNAs/metabolismo , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , Proteínas/metabolismo , Ratos , Ratos Wistar , Retina/metabolismo
19.
J Lipid Res ; 59(10): 1851-1863, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093524

RESUMO

Transient Receptor Potential (TRP) cation channels, like the TRP Vanilloid 1 (TRPV1) and TRP Ankyrin 1 (TRPA1), are expressed on primary sensory neurons. These thermosensor channels play a role in pain processing. We have provided evidence previously that lipid raft disruption influenced the TRP channel activation, and a carboxamido-steroid compound (C1) inhibited TRPV1 activation. Therefore, our aim was to investigate whether this compound exerts its effect through lipid raft disruption and the steroid backbone (C3) or whether altered position of the carboxamido group (C2) influences the inhibitory action by measuring Ca2+ transients on isolated neurons and calcium-uptake on receptor-expressing CHO cells. Membrane cholesterol content was measured by filipin staining and membrane polarization by fluorescence spectroscopy. Both the percentage of responsive cells and the magnitude of the intracellular Ca2+ enhancement evoked by the TRPV1 agonist capsaicin were significantly inhibited after C1 and C2 incubation, but not after C3 administration. C1 was able to reduce other TRP channel activation as well. The compounds induced cholesterol depletion in CHO cells, but only C1 induced changes in membrane polarization. The inhibitory action of the compounds on TRP channel activation develops by lipid raft disruption, and the presence and the position of the carboxamido group is essential.


Assuntos
Amidas/química , Ativação do Canal Iônico/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Esteroides/química , Esteroides/farmacologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Células CHO , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Microdomínios da Membrana/metabolismo , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
20.
J Invest Dermatol ; 138(8): 1774-1784, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29550417

RESUMO

This study revealed the modulatory role of transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) cation channels in the Aldara-induced (5% imiquimod) murine psoriasis model using selective antagonists and genetically altered animals. We have also developed a refined localized model to enable internal controls and reduce systemic effects. Skin pathology was quantified by measuring skin thickness, scaling, blood flow, and analyzing dermal cellular infiltrate, whereas nocifensive behaviors were also observed. Cytokine gene expression profiles were measured ex vivo. Psoriasiform dermatitis was significantly enhanced in TRPA1 knockout mice and with TRPA1 antagonist (A967079) treatment. By comparison, symptoms were decreased when TRPV1 function was inhibited. Imiquimod induced Ca2+ influx in TRPA1-, but not in TRPV1-expressing cell lines. Immunohistochemical studies revealed that CD4+ T helper cells express TRPA1 but not TRPV1 ion channels in mice skin. Compared with the TRPV1 knockout animals, additional elimination of the TRPA1 channels in the TRPV1/TRPA1 double knockout mice did not modify the outcome of the imiquimod-induced reaction, further supporting the dominant role of TRPV1 in the process. Our results suggest that the protective effects in psoriasiform dermatitis can be mediated by the activation of neuronal and nonneuronal TRPA1 receptors.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Psoríase/imunologia , Canal de Cátion TRPA1/imunologia , Canais de Cátion TRPV/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Imiquimode/toxicidade , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Oximas/farmacologia , Psoríase/induzido quimicamente , Psoríase/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/inervação , Pele/patologia , Canal de Cátion TRPA1/antagonistas & inibidores , Canal de Cátion TRPA1/genética , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...